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Abstract-Semi-empirical laws and microscopic descriptions of transport behavior have been integrated 
with principles of classical mixture theory to obtain a set of continuum conservation equations for binary, 
solid-liquid phase change systems. For a restricted, yet frequently encountered, class of phase change 
systems, the continuum equations have been cast into forms amenable to clear physical interpretation and 

solution by conventional numerical procedures. 

1. INTRODUCTION 

PROCESSES related to melting and solidification 
encompass a range of engineering and scientific disci- 
plines and occur in many applications such as casting, 
welding, glass forming and energy storage. Problems 
which impede the successful implementation of phase 
change processes are often related to the improper 
‘control’ of specific transport mechanisms. Examples 
include cracking due to excessive thermal stresses, 
pore or void formation due to improper feeding of 
castings, and constituent inhomogeneities resulting 
from uncontrolled species transport. 

Due to the absorption or release of latent energy, 
phase change problems are nonlinear, and exact solu- 
tions are limited to a small class of problems involving 
pure substances in one-dimensional infinite or semi- 
infinite domains [ 1,2]. The inability of these solutions 
to address multidimensional effects, non-discrete 
phase change and advection has focused attention on 
the development of suitable numerical procedures, 
which can be conveniently divided into two groups. 
The first group utilizes independent conservation 
equations for each phase and couples them with 
appropriate boundary conditions at the phase inter- 
face. Such methods are often referred to as multiple 
region or multiple domain solutions. The second 
group consists of single region (continuum) for- 
mulations which eliminate the need for separate phase 
conservation equations. 

Multiple region solutions require the existence of 
discrete interfaces between regions or phases in the 
domain and are generally limited to pure substances 
[3-71. The primary difficulty associated with their 
implementation centers on tracking the phase inter- 
face, which is generally an unknown function of space 
and time. The need for moving numerical grids and/ 
or coordinate mapping procedures complicates the 

application of this technique, and generally, sim- 
plifying assumptions regarding the geometric regu- 
larity of the phase interface are made. 

Unlike pure substances, multiconstituent systems 
do not exhibit a sharp interface between solid and 
liquid phases. In fact, due to impurities (intentional 
or otherwise), discrete phase change rarely occurs in 
practice. The phase change behavior of such systems 
depends on many factors including the phase change 
environment, composition, and thermodynamic 
descriptions of specific phase transformations. More- 
over, solidification occurs over extended temperature 
ranges and solid formation often occurs as a per- 
meable crystalline-like matrix which coexists with the 
liquid phase. 

Since they need not track phase interfaces, single 
region formulations are well suited for treating the 
continuous transition between solid and liquid phases, 
as well as the evolution of latent energy over a finite 
temperature range. Such formulations are generally 
developed from volume averaging techniques based 
on classical mixture theory. Detailed developments of 
the theory are available in the open literature [8-131, 
as are applications to inert systems such as dispersed 
oil droplets in water and fluid saturated granular 
materials [14-l 61. The theories have been extended to 
phase change processes [17-191, although treatments 
have been restricted to one-dimensional, conduction 
dominated conditions. 

While continuum formulations have been shown to 
provide realistic predictions of transport behavior for 
conduction phase change problems, inclusion of 
advective components of momentum, energy and 
species transfer does not appear to have been con- 
sidered. Such an extension necessitates consideration 
of multiphase region morphology, as well as relative 
phase velocities. While classical theories clearly 
acknowledge the significance of these factors, the 
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NOMENCLATURE 

area 

body force 
specific heat 
mass diffusion coefficient 

energy production rate 
mass fraction 
phase interaction force per unit volume 
volume fraction or gravitational 
acceleration 

momentum production rate 
enthalpy 
general surface flux vector 
thermal conductivity 
equilibrium partition ratio 
permeability 

mass production rate 
outward unit normal 
pressure (isotropic stress component) 
position vector 
source term 

time 
temperature 

24, v, w velocity components 

v velocity vector 
c:’ volume 
.Y. I , z Cartesian coordinates. 

Greek symbols 

ll viscosity 

I’ density 

0 partial density 
u vector component of material stress 

tensor 

; 

stress vector 

general scalar quantity. 

Subscripts 
k phase k 
I liquid 
liq liquidus 
r relative 
5 solid 
\- .u-component. 

Superscripts 
!x constituent (I. 

desire to maintain universal generality prohibits 
description beyond that of symbolic representations. 
Accordingly, the primary objective of the present 
work is to develop a consistent set of continuum equa- 

tions for the conservation of mass, momentum, 
energy, and species in a binary, solid-liquid phase 
change system. Emphasis is placed on casting the 

equations into forms which are amenable to clear 
physical interpretation, as well as to solution by con- 
ventional finite-difference or finite-element methods. 
Although achieving this objective must come at the 

expense of a loss of generality, related assumptions 
and constraints will be clearly identified and justified 
on the basis of physical considerations. In a com- 
panion paper [20], the capabilities of the model are 
demonstrated through application to solidification of 
a binary mixture in a rectangular cavity. 

2. MODEL FORMULATION 

The development of conservation equations from 
classical mixture theory is based on the following prin- 
ciples [9, 131: (i) mixture components may be viewed 
as isolated subsystems, if interactions with other mix- 
ture components are properly treated; (ii) all prop- 
erties of the mixture are mathematical consequences 
of the component properties ; (iii) the mean collective 
mixture behavior is governed by equations similar 
to those governing the individual components. Since 
these principles presume an inert mixture, application 
to multiphase, multiconstituent mixtures requires spe- 

cial care. While the phases can generally be considered 
as isolated, their constituents are often inseparable 
due to intimate bonding on an atomic level. Fur- 
thermore, since the properties of a non-inert mixture 
are not direct mathematical consequences of the com- 

ponent properties, application of mixture theory to 
non-inert systems requires additional information 
concerning the behavior of mixture constituents on 
an atomic scale. For many applications this infor- 
mation can be extracted from constitutional (phase) 
diagrams or from empirical relationships. 

In the present formulation a constituent represents 
a basic chemical element or compound, and a phase 
represents a quantity of matter which is homogeneous 
in physical structure and comprised of one or more 
constituents. Phases are assumed to be distinct and 
separable components of the continuum, although 
they need not be homogeneous in chemical composi- 
tion. In addition, the term ‘phase element’ is used to 
represent a macroscopic phase agglomerate, such as 
a liquid inclusion or solid grain. A system of SC con- 
stituents and k distinct separable phases is viewed as 
a continuum in which any location r can be sim- 
ultaneously occupied by all constituents and all phases 
(Fig. 1). The mean velocity of the constituents com- 
prising phase k, relative to a fixed reference frame, is 
designated as Vk and is termed the phase velocity. The 
absolute velocity of each constituent SC in phase k, 
relative to a fixed reference frame, is designated as 
V;, and the diffusion velocity of constituent GL in phase 
kisV:-V,. 
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Mixture Velocity 

FIG. 1. Graphical representation of a multiphase, multi- 
constituent continuum. 

The development of continuum conservation equa- 
tions requires relationships between densities and vol- 
ume fractions. If pz and $k are defined as the actual 
density and volume fraction of constituent CI in phase 
k, respectively, the partial density of constituent a in 
phase k can be expressed as 

I% = &Pk (1) 

Similarly, if pk and gk are defined as the actual density 
and volume fraction of phase k, respectively, the par- 
tial density of phase k is 

Pk = gkpk. (2) 

The mass fraction of constituent cx in phase k is then 

and the mass fraction of phase k is 

fk=+ 

k 

If the constituents can be viewed as separable phase 
components, as for inert systems, simple summation 
rules can be used to relate phase and constituent den- 
sities. For non-inert systems, however, atomic bond- 
ing between phase constituents prohibits relating 
phase and constituent densities in such a simple 
fashion. Since explicit atomic scale calculations are 
impractical, recourse must be made to empirically 
derived representations of phase densities. Never- 
theless, for the purpose of model development, it is 
convenient to consider fictitious volume fractions 
associated with non-inert constituents. Ultimately, 
phase diagrams, or similar atomic level descriptions, 
will circumvent the need for explicit consideration of 
these volume fractions. 

An explicit statement must also be made regarding 
the relationship between phase volume fractions. In 
the present formulation the requirement that all 
phases do not vanish simultaneously is enforced, in 
which case 

Note that, although treatment of the phase volume 
fractions as continuous functions of space is implicit 
in the continuum formulation, application of the for- 
mulation to discrete phase change systems is not pre- 
cluded. In fact, for conduction phase change 
problems, it has been shown that continuum for- 
mulations are equivalent to conventional con- 
servation equations at discrete phase interfaces [21]. 

2.1. Conservation of a general scalar quantity 
Consider the transport of a general scalar specific 

quantity 4k associated with phase k in a multiphase 
mixture. For an arbitrary fixed control volume P of 
surface area A, which is larger than a phase element 
but smaller than the characteristic domain dimension, 
conservation of 4k can be expressed as a balance of 
accumulation, net outflow by advection and diffusion, 
and volumetric production 

; 
s 
pbd’kldf% + A [PkVk&l’nd-% 

s 

= s A 

where n is the outward unit normal to the surface, Jk 
is a surface flux vector and Sk is a volumetric source 
term which includes production or annihilation of &. 
In the present formulation the differential surface area 
dAk is assumed to equal g,dA. Since gk is assumed 
to be continuous, the integrands of equation (6) are 
continuous and differentiable functions, and the inte- 
gral theorems of Leibnitz and Gauss can be applied. 
Furthermore, since the control volume is arbitrary, 
equation (6) can be expressed in differential form as 

;(Pk4k)+v*tikvk4k) = -v*(gkJk)+gksk. (7) 

2.2. Conservation of mass 
The statement of mass conservation for phase k can 

be obtained from equation (7) with 4k = I, J,, = 0, 
and Sk = ak, yielding 

;(h)+v’@kvk) = gkak. 

The continuum equation for mass conservation is 
obtained by summing the phase conservation equa- 
tions and recognizing that the production of phase 
k,&fk, must come at the expense of other mixture 
phases (+tik = 0). Hence 

;@)+V.@v) = 0 (9) 

where the mixture density and mass averaged velocity 
are 

P=xbjk 
k 

(10) 

(11) v=&hvk=~fkvk. 
k 
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2.3. Conservation of linear momentum 
For convenience, Cartesian coordinates will be 

assumed and the velocity of phase k expressed as 

v, = UkilfVki+ w,L. (12) 

The statement of conservation of x-momentum for 
phase k can be obtained from equation (7) with 
r#~ = uk, Jk = -ekX and Sk = pkBkx + &, yielding 

&%uk)+vWku,) = V.(WkX) 

+iQL+g&x. (13) 

The flux vector ukX represents the component of the 
general material stress tensor which influences x-direc- 
tion momentum, while Bkx represents the x-com- 
ponent body force on phase k and Gkkx accounts for 
momentum production due to phase interactions such 
as drag and lift. The continuum equation governing 
the conservation of x-momentum can be obtained by 
summing equation (13) over each phase, yielding 

~(~,,u~)+v~(~.v~u~j=v~(~g~r,,j 

-Q Ir ( > ax !i 
gkpk + c (pk&x) + Fx (14) 

where the flux vector has been decomposed into iso- 
tropic and deviatoric components, bkX = -pki?fzk, 
and the net x-component force due to phase inter- 
actions is F, = ~kgk&. If the advective momentum 
flux is decomposed into components representing con- 
tributions from the mean mixture motion and relative 
phase motion 

cpkvkuk = pvu + ~~k(vk-V,(uk-u) (15) 

k k 

where the mass averaged x-component of the mixture 
velocity is 

u = ;;bk”k = cfk”k (16) 
k 

and the x-component mixture body force is defined 
as 

B, = &%&, = xfk&x 
k 

(17) 

equation (14) can be expressed as 

;(pn)+V’(pVn) = V’ xgkzkr 

( > k 

-v* ~Pk(Vk--V)(Uk-U) 

( k > 

- -” CgkPk 

i > ax k 

+ P&+F,. (18) 

At this stage in the formulation, specific con- 
sideration must be given to the nature of the phase 
stress vector tkX. It is impOrtant t0 RXOgniZe that rkX 

includes only stresses resulting from interaction of a 
phase with itself. The effect of interactions between 
phases is accommodated by the quantity F,. Speci- 
fication of 7kx requires an a priori assessment of the 
continuity of each mixture phase. A phase will be 
considered continuous if any two points within the 
phase can be joined by a continuous curve which lies 
solely within the phase. For example. if consideration 
is given to the flow of a liquid through a permeable 
solid matrix, both solid and liquid phases would be 
considered continuous. On the other hand, for a dilute 
suspension of solid particles in a liquid, the solid phase 
would be discontinuous. 

If each mixture phase is considered continuous, 
constitutive relationships are available to describe 7,,r_ 

In the present formulation the behavior of each con- 
tinuous phase is assumed to be Newtonian, implying 
that rigid phases, such as solids, are treated as highly 
viscous fluids. Due to the spatial variations in phase 
volume fractions which occur in phase change prob- 
lems, appropriate averaging of classical Newtonian 
constitutive equations is necessary. This requirement 
becomes apparent if consideration is given to the rate 
of expansion (dilation rate) of phase k. In order to 

maintain consistency with the phase continuity 
requirement, equation (8) the dilation rate of phase 
k must be expressed as V *( gkVk)/gk. Hence only when 
the phase volume fraction is spatially invariant can 
the dilation rate be expressed as V. (V,). It follows 
that, for each continuous phase, the average stress 
vector is expressed as 

gk7kA = pkv(gkuk)- fhv*(<~kV!~)~+~t, (19) 

where 7& represents the viscous stresses not included 
in n,V(g,u,). In Cartesian coordinates this term is 
expressed as 

L 

q 

7:~ = pk &?kuk$+ &gkl.k).i+ ;$ykwk)k^ 

I 

PO) 

If phase viscosities are assumed constant, it can be 
shown that 

V- ; 17:x 
( 

- $l*kv* (gkVk)ij 

i 

= $$kv’ bkVk)h tzl) 

Subctituting equations (19) and (21) into equation 
(18), it follows that 

;(pn)+V’(pVn) = V*( ;pkV’gkuk’) 

-V. Tp*(V,-V)(u,-U) 

(22) 

where 
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P = psvk-:Pk'(r'(~kvkI1. (23) 

Prescription of the phase interaction force F, 
requires careful consideration of the multiphase 
region morphology. For a wide range of multi- 
constituent solid-liquid phase change systems, the 
multiphase region is characterized by a tine permeable 
solid matrix which can often be considered stationary 
(static solidification) or constrained to free body 
translation (continuous solidification). For such sys- 
tems, analogies can be drawn to flows through porous 
media. Specifically, Darcy’s law suggests that phase 
interaction forces are proportional to the superficial 
(or discharge) liquid velocity relative to the velocity 
of the porous solid. That is 

F, = $(w) (24) 
X 

where K, represents the component of anisotropic 
pe~eability which influences x-direction momentum 
transport and u, = a, -u, represents the x-component 
relative phase velocity. If it is further assumed that 
phase densities are constant, the solid matrix is free 
of internal stress (V(g~~~) = 0) and transiates at a 
prescribed velocity V,, and that viscous stresses resdt- 
ing from local density gradients are negligible 
(V(p/p,) = 0), equation (24) can be substituted into 
equation (22). Invoking the identities g, = (~~~,~~~ 
and f,u, = U-U,, it follows that 

&n4)+v-(Pvu) = v. &p4 ( ) 
- ~~(U-U.)-V.(Pf.flVrU,) - $ + PB,. 

x 

(25) 

The third term on the right-hand side of equation (25) 
represents inertial forces established as a consequence 
of variations in relative phase velocities. This inertial 
contribution appears only in the m~tiphase region, 
where permeabilities are extremely small and the con- 
tribution is negligible compared to the Darcian damp- 
ing force. Hence, the final continuum expression for 
momentum conservation can be written as 

+(a+~+p&. (26) 

Equation (26) reduces, as it must, to the appropriate 
single phase limits as K, -+ 0 (pure solid) and Kx + 
co (pure liquid). The solid velocity is set to zero for 

static phase change systems, or to a constant value, 
as prescribed by external boundary conditions, for 
continuous phase change systems. 

For solid-liquid phase change systems in which the 
solid phase is discontinuous or subject to uncon- 
strained motion, explicit consideration must be given 

to phase interactions and descriptions of relative 
phase motion. One procedure, known as the two fluid 
model (161, solves conservation equations for each 
separable phase, such as equation (i3), and couples 
them through expressions describing internal inter- 
actions The prescription of such interactions relies 
on the ability to accurately characterize influences 
such as drag and lift on the solid phase, which would 
be difficult to assess either analytically or empirically. 
Furthermore, if the solid phase is discontinuous, 
constitutive relationships for the solid phase stress 
vector TV, would require explicit consideration of 
complex phenomena such as collisions and mech- 
anical interference between solid particles. In view of 
these difficulties, no general recommendations can be 
given for dealing with momentum transport in these 
systems. 

For phase change systems the transition regions 
of which are not characterized by discrete separable 
phases, such as glassy substances and waxes, the con- 
cepts of relative phase motion and phase interactions 
clearly have no significance. For such systems, 
momentum transport might best be described by 
in~oducing an effective viscosity p. Hence the 
momentum equation can be written as 

; (pu) + V - @Vu> = V * @Vu) - g + pB, (27) 

where ,U exhibits appropriate limits in the pure solid 
(p --t co) and pure liquid o( + pi). One representation 
which satisfies these limits is a harmonic mean of the 
phase viscosities which, for K = co, reduces to 

Since the phases are physically nonseparable, phase 
volume fractions must be considered fictitious in much 
the same manner as constituent volume fractions 
associated with phases comprised of non-separable 
constituents, equation (1). ~timately, the prescrip- 
tion of these volume fractions relies on empirical 
representations. For example, density measurements 
could be performed on partially solidified systems, 
correlated with tem~rature, and related to a fictitious 
liquid volume fraction derived from equations (2), (5) 
and (10) 

9, - p---p* 

PI-Ps 
(29) 

where p is the density of the partially solidified system 
and ps and pI represent the densities of the system 
just prior to the onset of melting and SoIidi~cation, 
respectively. 

2.4. ~o~e~a~~~~ of energy 
The statement of energy conservation for phase 

k can be obtained from equation (7) with &. = h,_ 
Jk = -k,VT, and S, = &. Hence 
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~(~khk)+V.(~kVkh~) = V.(gkkkVT)~gk~k (30) 

where local thermodynamic equilibrium has been 
assumed (Tk = T) and the source term & represents 
energy production associated with phase k. The con- 
tinuum equation of energy conservation is obtained 
by summing the conservation equations for each 
phase and recogni~ng that zg,& = 0. It follows that 

~~(~hh,)+Q.(Fav,ai)=V,(kVT) (31) 

where the mixture conductivity is 

k ;=&A. 
I 

(32) 

The advective term may be decomposed into con- 
tributions due to the mean mixture motion and the 
relative phase motion 

&&V&k = pVh + &%(Vk--V)(kN (33) 
k k 

where the mixture enthalpy is 

h = &Qz~ = xf;hk. (34) 
k 

Substituting into equation (31), it follows that 

&h)+V.(pVh) = V*(kVT) 

-VW 
( 

&?,fV,-V)(h,-h) . (35) 
k > 

In the present formulation the enthalpy of phase k 

is defined as 

where ck represents an effective specific heat of phase 
k. For phases consisting of non-separable constitu- 
ents, prescription of the phase specific heats and ther- 
mal conducti~ties must rely on empirical results. Sub- 
stituting the identity 

VT= l;Vh + $r(h,-h) 

into equation (35), it follows that 

(37) 

$ph)+V$A’h) = V* (~Vh) + V*(zV(h,-h)) 

--v* T&(V,-V)(h,-12) 
( > 

(38) 

or, for the special case of a two-phase, solid-liquid 
system 

- V.[pJ’,(h,--h,)(V--V,)I. (39) 

The first two terms on the right-hand side of equation 
(39) represent the net Fourier diffusion flux. By 
expressing the flux in this manner, temperature is elim- 
inated as an explicit dependent variable. While tem- 
peratures do not appear explicitly in the energy equa- 
tion, they are implicit in the definitions of phase 
enthalpies prescribed by equation (36). The last term 
appearing in equation (39) represents the energy flux 
associated with relative phase motion. Transport due 
to relative phase motion is identically zero for situ- 
ations where all phases move at the mass average 
velocity (V, = V) or for conditions where the phase 
enthalpies are equal to the mixture enthalpy (hk = h). 
For systems where relative phase motion has no physi- 
ca1 significance, such as glassy substances and waxes, 
terms accounting for transport due to relative phase 
motion are omitted. 

2.5. Conservation of species 
The conservation requirement for species c( can be 

obtained from equation (7) with #* = f;, Jk = 
-p,D;VfE, and Sk = A& That is 

(401 

where nkk represents the production or annihilation 
of species tl in phase k. The continuum species con- 
servation equation is obtained by summing the con- 
servation equations for each phase and recognizing 
that the production of species c( in phase k must be 
accompanied by a destruction of species CI in other 
phases (Fg,& = 0). Hence 

;( pa”‘) + v(,P,v,f;) 

( 
\ 

= v- ~~Pfmf;). (41) 
/ 

The advective species flux can be decomposed into 
contributions from the mean mixture and relative 
phase motions 

&sf ;: = pvf” -t r: dvk - wf”k - .f” I (42) 
k * 

where the mixture concentration of species u is 

f” = &-if: = ;/A (43) 

Substituting equations (42) and (43) into equation 
(411, it follows that 
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For a two-phase, solid-liquid system, diffusion in the 
solid phase can be neglected relative to that in the 
liquid phase (Dt >> D:). With this assumption and 
the identity 

VfP = vf”+v(f;“-f”) 

equation (44) may be expressed as 

(45) 

(46) 

where the mixture mass diffusion coe&ient is 

D = f,DP. (47) 

The first two terms on the right-hand side of equa- 
tion (46) represent the net diffusive (Fickian) species 
flux. The last term represents the species flux due to 
relative phase motion. If the phase velocities are equal 
to the mixture velocity (V, = V) or the phase com- 
positions are equal to that of the mixture (fi = f”), 
this flux is identically zero. In addition, species trans- 
port due to relative phase motion is omitted for phase 
change systems where relative phase motion has no 
physical signiScance (glassy substances, waxes, etc.). 

For binary systems, species conservation equations 
need only be considered for one constituent, since 
overall species conservation requires $f” = 1. 

2.6. Supplementary relationships 
Closure of the system of conservation equations 

requires suppl~en~~ relationships for phase mass 
fractions fk and compositions f”R. For a wide range 
of practical applications, solidification and melting of 
binary systems can be closely approximated by the 
assumption of local composition equilibrium at phase 
interfaces. The assumption of interface eq~ib~~ 
does not rule out the possibility of phase composition 
gradients, but rather implies that the resistance to the 
transport of constituent atoms across the interface 
is negligible. Under such conditions continuum and 
phase compositions can be related to temperature 
through equilibrium phase diagrams. In reference to 
the binary solid-liquid phase diagram of Fig. 2, con- 
servation of species a can be expressed as 

f” = .fLf: +fiff. (48) 

For saturated conditions, f,+f, = 1, and equation 
(48) can be expressed as 

f-r--f” 
f8Zfp-f:. ew 

Tn 

T 

T 

0 f,” 1 

f’ 

FIG. 2. Equilib~~ phase diagram for a binary system. 

Equation (49) is commonly termed the lever rule 
and is simpiy a statement of local conservation for 
species ~1. It should be recognized that the lever rule 
follows directly from the continuum expression for 
the mixture concentration, equation (43), without 
regard for the binary phase diagram. The phase dia- 
gram serves as a graphical representation of species 
conservation. More importantly, the phase diagram 
permits the description of constituent transport on 
an atomic scale in terms of measurable macroscopic 
variables such as temperature and composition. 

When working with phase diagrams, it is con- 
venient to define an equilibrium partition ratio kp as 

k,,=g. 
I 

A finite mushy region can exist for kP c 1 and rep 
resents conditions for which the solute (ol) has limited 
solubility in the solid phase. In the limit as kP + 1 
(equal solute solubility in solid and liquid phases), 
discrete phase change behavior, without a mushy 
zone, will be observed. In general, the eq~lib~um 
partition ratio is temperature dependent and can be 
computed directly from the phase diagram. Often, 
however, the curvature of the solidus and Iiquidus 
lines are slight and they can be approximated as 
straight lines. The eq~lib~~ partition ratio can then 
be interpreted as the ratio of the slopes of the liquidus 
and solidus lines, and equation (49) can be expressed 
as 

fs _ l *- qi-3 
[ 1 l-k, T--T, 

where T is the local temperature, T& is the liquidus 
temperature ~o~esponding to f”, and T, is the fusion 
temperature of the system as f” -+ 0. Furthermore, 
equations (48) and (50) can be used to relate phase 
and mixture com~sitions 

(52) 

It is important to recognize that the assumption of 
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local equilibrium does not preclude the existence of in Fig. 3, and simplifying assumptions, explicitly 
non-equilibrium conditions on a larger macroscopic stated or implied at various stages in the model devel- 
scale. Macroscopic redistribution of species by both opment, include laminar flow, Newtonian behavior of 
advective and diffusive transport is accommodated by the phases, saturated mixture conditions, local ther- 
equation (46). If local equilibrium is unlikely, as with modynamic equilibrium, and local constitutional 
rapid melting and solidification, alternative means of equilibrium. Validity of these assumptions depends 
relating mixture and phase compositions would be on the specific nature of the problem, as well as on 
required. the desired accuracy. 

3. CONCLUSIONS 

A continuum formulation for analyzing macro- 
scopic phase change behavior in binary, solid-liquid 
systems has been developed. Microscopic descriptions 
of transport behavior, as well as semi-empirical laws, 
have been integrated with principles of classical mix- 
ture theory to obtain a consistent set of equations 
governing the conservation of mass, momentum, 

energy, and species. While multiple domain solutions 
are most often used for the analysis of phase change 

problems, continuum formulations offer several dis- 
tinct advantages. In addition to permitting use of the 
same computational framework to address a range of 
multiphase, multiconstituent phase change systems, 
continuum formulations can be adapted to single 
phase problems. Continuum formulations also elim- 
inate the need to track phase interfaces and hence, 
the associated use of quasi-steady approximations, 

numerical remeshing and coordinate mapping. More 
importantly, continuum formulations are well suited 
for accommodating continuous phenomena, such as 
the absorption or liberation of latent energy over a 
finite temperature range, which are generally associ- 
ated with multiconstituent systems. 

Continuum formulations are generally considered 
unsuitable for addressing discrete phase change and 
are frequently criticized for ‘smearing’ discrete 

phenomena. Such ‘smearing’ is inherent in the con- 
tinuum formulation and is a direct consequence of 
approximating discontinuous functions, such as 
enthalpy or viscosity, with continuous functions. 
While the ‘smearing’ can be reduced by using fine 
computational meshes, it can never be entirely elim- 
inated. From a practical perspective, however, the 
influence of ‘smearing’ on the prediction of macro- 
scopic transport behavior can be reduced to accept- 

able (negligible) levels. Through comparisons with 
exact solutions, it has, for example, been verified that, 
for conduction dominated situations, continuum for- 
mulations yield accurate predictions, even in the limit 
of discrete phase change. Furthermore, due to the 
existence of impurities, discrete phase change rarely 

occurs in practice. 

Consistent with the objectives of the present work. 
effort has focused on the development of conservation 
equations which are clear, concise and free of ambigu- 

ous symbolic representations. The equations have 
been developed in a fashion which permits and, in fact, 
encourages the relaxation of numerous constraints 
which ultimately results in the loss of generality. For 
example, many alternative forms of the conservation 
equations can be obtained. The special case of :r 
stationary solid phase (V, = 0) can be considered. o: 
supplementary relationships such as equations (5 I)- 
(53) (or suitable alternative expressions) can be sub- 
stituted directly into the more general forms of the 
conservation equations. Since many binary systems 

exhibit a mushy region which can be characterized by 
a fine permeable solid matrix. the present formulation 
has incorporated the mushy region substructure 
description into the Darcian permeability. Direc- 
tionality, which results from preferred growth direc- 
tions or growth mechanisms, can be accommodated 
through the adoption of an anisotropic permeability. 
Furthermore, permeability components are in no way 
restricted to a sole dependence on scalar quantities 
such as temperature or composition. Permeability 
could, for example, be dependent on gradients of tem- 
perature and/or composition and thereby exhibit a 
selective directionality. Similarly. for conditions 
where the Darcy assumption may be inappropriate. 
alternative descriptions of phase interactions, such as 
F,, equation (24) can be invoked or explicit sup- 
plementary relationships for relative phase velocities 
can be provided. Specialized processes which involve 
non-conservative forces or non-conservative energy 
production can also be incorporated through appro- 
priate modifications of momentum source terms and 
relaxation of the Z&g& = 0 constraint in the energy 
equation. Examples of such processes include elec- 
tromagnetic casting, electromagnetic melt stirring, or 
processes involving radiation propagation through 
participating semi-transparent media. 

The complex nature of phase change processes 
clearly requires considerations which are unique to 
particular systems. In this study, a degree of generality 
has been sacrificed for the sake of utility, in order to 
develop conservation equations for several restricted, 
yet frequently encountered, classes of solid-liquid 
phase change systems. These systems are summarized 

It is also recognized that the conservation equations 
must be used in conjunction with one of many numeri- 
cal schemes available for the solution of partial differ- 
ential equations. Although this issue has not been 
considered explicitly, several features of the model 
have been introduced to achieve numerical con- 
veniences in the solution scheme. Examples include 
separation of the Fourier diffusion flux. equation (39). 
into components which enable temperature to be elim- 
inated as an explicit dependent variable, and 
decomposition of the Fickian diffusion flux, equation 
(46). Transformation of the governing equations into 
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Dendritlc Growth) 

UNCONSTRAINED SOLID 
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FIG. 3. Classification of solid-liquid phase change systems. 

forms suitable for a particular solution scheme is 

described in the companion paper [20]. 
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UN MODELE CONTINU POUR LA QUANTITE DE MOUVEMENT, LA CONVECTION 
DE CHALEUR ET DE MASSE DANS LES SYSTEMES A CHANGEMENT DE PHASE 

SOLIDE-LIQUIDE--I. FORMULATION DU MODELE 

R&nn&-Des lois semi-empiriques et des descriptions microscopiques du mecanisme de transfert ont ttt 
integr&es g la theorie classique des melanges pour obtenir un systeme d’equations de bilan continu pour 
des systtmes a changement de phase solide-liquide. Pour une classe limit&e mais friquemment rencontrte, 
de systimes les equations ont ite mise sous des formes permettant une interpretation physique Claire et une 

resolution par des procedures numtriques conventionnelles. 

EIN MODELL FUR IMPULS-, WARME- UND STOFFTRANSPORT IN BINAREN 
FEST-FLtiSSIG-PHASENWECHSELSYSTEMEN-I. MODELLANSATZ 

Zuaammenfassung-Halbempirische Gesetze und mikroskopische Beschreibungen des Transportverhaltens 
wurden mit den Prinzipien der klassischen Mischungstheorie verbunden. Es ergibt sich ein Satz von 
Erhaltungsgleichungen fur binlre Fest-fltissig-Phasenwechsel-Systeme. Fiir eine bestimmte, hlufig auf- 
tretende, Gruppe von Phasenwechselsystemen, wurden die Gleichungen in eine Form gebracht, die eine 
klare physikalische Interpretation ermiiglicht und aul3erdem mit herkiimmlichen numerischen Verfahren 

l&bar ist. 

UrEHOMEHOJIOI-H9ECKIIE YPABHEHHE I-IEPEHOCA KOJIHYECTBA ~BM~EHHJI, 
TETIJIA II MACCbI B EHHAPHbIX CMCTEMAX TBEPAOE TEJIO-)KEIfiKOCTb I-IPH 

QA3OBbIX H3MEHEHMRX-I. @OPMYJIHPOBKA MOAEJIH 

AmoTum__Ann nonyveHnK cHcTehm &HOMeHOmHWCKUX ypaariennti nepenoca nna 6UHaPHbIX 

CHCTeM TBepWe TeJTO-EHJIJCOCTb lIpSi f&UOBbIX H3MeHeHURX BbRlOJlHeHO 06aeJ&mremie IIOJIy3MlIHpH'ieC- 
KSiX 3aKOHOB H M~OCKOIlH'ISKHX Ol'lHCaHHti ItpOUeCCOB llejMiOCa C 3aKOHaMB TeOpHH CMeCeii )&In 

OQXtHH’I~HHO~O,OjlHaKO, VaCTO ncrpe~aw~emcr Knawa CHCTOM IlpH &UOBbIX nepexonax IlpHBOJVlTCX 

yPaBHeHH# I'IeFHOCi? B BHjle, yn06rio~ LUIR HX @H3H’ieCKOti EiiiTeplI~TaUiW B &WIIeHH% C IlOMOUWO 

06bI¶HbIX%iCJleHHbtXMeTOiIOB. 


